What Is Predictive Analytics?
Predictive analytics is a type of data analysis that uses statistics, data science, machine learning and other techniques to predict what will happen in the future. Predictive analytics answers the question “What is most likely to happen in the future based on historical trends?”
Companies can use predictive analytics to identify possible risks and opportunities. Once established, predictive insights can then be utilized to prescribe the action a company should take.
Why Is Predictive Analytics Important?
Predictive analytics is important because it enables businesses to accurately estimate what is likely to happen next in a scenario. This enables organizations to detect and mitigate potential problems or outperform competition by quickly capitalizing on new opportunities.
Types of Predictive Modeling
Supervised learning and unsupervised learning are two different modeling approaches that can be used to build predictive models and solve specific problems.
Three types of algorithms used for predictive modeling are:
How Does Predictive Analytics Work?
Predictive analytics always starts with a business problem(customer churn and attrition, inefficient processes, etc.). Then, the predictive analytics process follows these steps:
Acquire the data required for decision: This might be behavioral data, equipment data, social data, or financial data —the historical data that will help predict future outcomes.
Integrate, blend, and cleanse training data: Make sure the data used to train the model is in the in the right shame and format for the analytic techniques to be used.
Build the predictive model: Select an algorithm and starting parameter values and begin the iterative process of comparing the model’s prediction with the correct output, repeatedly adjusting parameter values until the model is predicting accurately on the training data.
Validate predictive model: Show the model “unseen” historical data and compare its predictions to what actually happened to ensure the model is not overfitted to the training data.
Deploy predictive model: Host model to provide access to incoming data for scoring while monitoring model performance and retraining as needed.
Business system integration: Use the predictive score to take action (process improvement, predictive maintenance, equipment monitoring).
Predictive Analytics Use Cases
Predictive analytics can help different businesses and different departments meet important goals and solve problems.
Customer Success
- Predict which customers are likely to churn within a given period so you can take action to prevent the loss of valuable customers
- Categorize customers into predefined groups (aka segments) based on patterns to learn more about them
Healthcare
- Predict which patients are likely to miss their appointments so you can improve clinicians’ productivity by ensuring minimal “downtime” due to no-shows
- Predict which patients are likely to be unsatisfied and why; use that information to determine how to improve patient satisfaction
Insurance
- Predict which policyholders are likely to lapse and come up with a strategy to increase retention
- Predict which claims are likely to be successfully subrogated so you can focus efforts on high-potential claims and optimize recovery of loss payments
Marketing
- Predict which survey recipients are likely to respond
- Predict which customers are likely to respond to campaign messages and prioritize outreach to those customers
Sales
- Predict which potential customers are likely to respond and prioritize contacting them
- Predict which other products customers are likely to buy so you can focus cross-sell and upsell efforts
How to Get Started with Predictive Analytics
The Alteryx Analytics Automation Platform delivers predictive analytics within the complete analytics workflow. Data access, preparation, modeling, and sharing of analytic results all happens in the same place, in one easy-to-use platform.
You can also see how Alteryx makes predictive analytics more accessible and agile by downloading a free Predictive Analytics Starter Kit. The solution kit comes with analytics templates to help you learn how to use the low-code, no-code tools in Alteryx to predict customer spending, make time series forecasts, and optimize your pricing.
For more information on Alteryx predictive analytics solutions, contact us today.
Next Term
Cloud Data Warehouse (CDW)Related Resources
Customer Story
Protected: Saving Over 75 Hours Day with Automated Forecasting
- Data Prep and Analytics
- Data Science and Machine Learning
- Process Automation
Customer Story
Protected: AAA National Helps Clubs Provide Better Service with Alteryx
- Data Prep and Analytics
- Data Science and Machine Learning
- Analytics Leader