Use Case

Call Center Analytics Predictive Modeling

 

Understanding call volume, length of calls, and employee performance is important to success in the call center. Through predictive modeling, companies can anticipate spikes in volume, address issues that affect call length, and improve customer satisfaction.

Efficiency Gains

End-to-end automation of call center performance and reporting

Top-Line Growth

Eliminate factors that negatively impact performance and automatically implement reward structures

Bottom-Line Returns

Maximize call center performance and automatically use new data to further optimize over time, without additional investment

Business Problem

Do your customers look favorably on their interactions with your company’s call center? What do they like and dislike the most? Conversations with call center representatives are usually less gratifying than a face-to-face meeting, but most customers still breathe a deep sigh of relief when they reach a real human being. They often complain about the long time spent on hold, the time to resolution, and the need to re-explain issues after every transfer. Furthermore, enduring a long call won’t guarantee that the original problem will get resolved. Call center managers conduct satisfaction surveys to track customer ratings on employee performance and call volume. One of their goals is to ensure that the call center has a sufficient number of staff and resources to handle the workload. But historical data only offers conclusions about the past or, at best, the present. What managers really want is the data to help them look forward.

Alteryx Solution

Predictive models extrapolate from historical data so that managers can anticipate future situations and plan for adequate staffing. They analyze call volume and individual performance metrics, such as service level, time to resolution, and resulting customer satisfaction. Workflows tie those analytics into other areas so managers can predict the impact of product launches, price changes, new features, and holiday spikes in volume to optimize staffing levels. Successful outcomes include greatly reduced on-hold times and more time for call center representatives to solve problems. With augmented machine learning, managers can build predictive models without coding. Predictive models can help increase levels of customer satisfaction and improve net promoter scores.

 

Additional Resources

 
 
Starter Kit for Snowflake

Learn More
 
 
Operational Analytics

Learn More
 
 
Starter Kit for Microsoft

Learn More
 
 
Starter Kit for Tableau
Learn More
 
 
Reduce Support Case Time to Resolution
Learn More
 
 
Triage Customer Support Calls
Learn More
 

Recommended Resources

 
White Paper
The Soccer Analytics Revolution: Enhancing Performance On and Off the Field
Explore The Soccer Analytics Revolution - Uncover insights from data-driven soccer teams, elevate competitiveness, and optimize performance on and off the field.
  • Fanalytics
  • Analytics Leader
  • IT Professional
Read Now
 
Analyst Report
Nucleus Research – Alteryx Highlights AI and ROI at Inspire 2023
At Alteryx Inspire 2023, Alteryx announced various new and extended capabilities to improve its value proposition for certain users or use-cases. This includes expanded cloud platform experiences, cloud-based Location Intelligence for spatial analytics, integrated generative AI capabilities with Alteryx AiDIN, and the Alteryx Maveryx user community.
  • Analytics Maturity
  • Company
  • Analytics Leader
Read Now
 
White Paper
Private Data Handling
It starts with transparency. Learn about the security controls, architecture, and governance practices utilized to secure an Alteryx Analytics Cloud private data plane.
  • IT Professional
  • IT
  • Alteryx Analytics Cloud
Read Now