Clean Data & Accurate Machine Learning Models

Clean Data & Accurate Machine Learning Models

Predictive analytics can provide your organization with data insights and differentiation to rise above the competition. However, Machine learning (ML) outcomes are only as good as the data they are built upon. Getting the data ready for accurate modeling is time consuming, cumbersome, and a waste of data professionals’ skills to be polishing the materials they rely on while they should focus on the work that matters—creating accurate predictions that improve products, services, and organizational efficiency.

In this latest webinar, we will see how the data preparation process can be streamlined to produce an accurate model for Amazon SageMaker. Guest speaker Kris Skrinak, Machine Learning Segment Lead from Amazon Web Services Partner Network will provide deep insights.

Speakers:
Vijay Balasubramaniam, Sr. Partner Solutions Architect – Trifacta
Kris Skrinak, Machine Learning Segment Lead – Amazon Web Services